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Abstract We introduce fundamental concepts for the design of dynamics and feed-
back in molecular networks modeled with ordinary differential equations. We use
several examples, focusing in particular on the MAPK pathway, to illustrate the
concept that feedback loops are fundamental in determining the overall behavior
of a system. Often, these loops have a structural function and unequivocally define
the system behavior. We conclude with numerical simulations highlighting the po-
tential for bistability and oscillations of the MAPK pathway re-engineered through
synthetic promoters and RNA transducers to include positive and negative feedback
loops.

1 Introduction
Cells sense their environment and make decisions through coordinated molecu-
lar events. The dynamic interactions among nucleic acids, enzymes, and small
molecules define such molecular events and specify their possible outcomes. For
example, a set of reactions among a set of enzymes and genes may trigger tran-
sient, sustained, or periodic responses in other enzymes, depending on external
stimuli [44]. Feedback among molecular components plays a crucial role in defin-
ing such complex behaviors, and synthetic feedback loops are routinely designed to
redirect cellular responses and fate [20].

Mathematical models capturing the behavior of a molecular system are useful to
support and guide experiments [13]. Feedback loops may result in counter-intuitive

Elisa Franco
Department of Mechanical Engineering, University of California at Riverside, Riverside, CA
92521
e-mail: efranco@engr.ucr.edu

Kate E. Galloway
Department of Stem Cell Biology and Regenerative Medicine at the Keck School of Medicine,
University of Southern California, Los Angeles, CA 90033
e-mail: katie.galloway@usc.edu

1

efranco@engr.ucr.edu
katie.galloway@usc.edu


2 Elisa Franco and Kate E. Galloway

behaviors in a system, thus a combination of numerical and theoretical analysis of
a validated model can yield important insights, for example helping to identify the
key species and parameters. Models can often be simplified to focus on such key
reactions, and it may be possible to achieve very I suggest deleting ”very” unless
you meant ”valid” conclusions on the behavior of the system without having to
resort to extensive numerical simulations [4].

In this chapter, we focus on classical methods from dynamical systems and con-
trol theory that can be used on ordinary differential equation (ODE) models of
molecular networks. We begin by briefly introducing this I suggest replacing ”this”
with ”these” or eliminating ”this” and changing ”through” to ”of” ODE models
through the mitogen-activated protein kinase (MAPK) pathway, for which a hierar-
chy of models of different complexity is available in the literature [4, 5, 22]. ODE
models for molecular networks always include nonlinear terms: we introduce the
concept of linearization, through which one can systematically explore the behav-
ior of a system in a neighborhood of its stationary points. We illustrate this simple
method with several examples, in particular the MAPK pathway.

Through simple examples, in Section 4.1 we highlight the concept that feed-
back loops can often unequivocally determine the only possible dynamic response
of a system. Some of the first and best known mathematical conjectures in this
area were formulated by R. Thomas [41], and focus on the feedback loops in the
linearized model of a system (loops in the Jacobian graph): a negative feedback
loop is a necessary condition for stable periodic behavior, while a positive loop
is a necessary condition for multistationarity (see [14] for a very thorough sur-
vey). These conjectures were proved in [19] and [38], with several further exten-
sions and refinements [8,24,34,39]. While Thomas’ conjectures are only necessary,
they have been helpful in guiding the design of numerous synthetic molecular cir-
cuits [6, 15, 16, 18, 26–28, 31, 40, 42]. We conclude the Chapter is it canonical to
capitalize Chapter as a proper name? I was unsure about this. with numerical simu-
lations exploring the potential for bistability and oscillations of the MAPK pathway
in yeast, re-engineered to include artificial positive and negative feedback through
synthetic promoters and RNA gates I suggest replacing ”gates” with ”transducers”
[17].

2 Dynamic models for molecular systems
A mathematical description of the dynamics of a system is needed before we can
decide on a feedback strategy. Deterministic ordinary differential equations (ODEs)
are commonly adopted in conventional engineering fields: ODEs are easily derived
directly from the laws of physics, thermodynamics, and electromagnetism, and are
a good description of macroscopic systems where stochastic effects are negligible.
Molecular systems operating at high copy numbers have been successfully modeled
using ODEs; for gene networks, alternative descriptions include stochastic equa-
tions or boolean models [13]. The MAPK pathway is a well-known signal transduc-
tion network which has been successfully modeled using ODEs: we will use it as
our example system throughout this Chapter.
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One can identify two main approaches to the derivation of ODE models for bio-
chemical systems. The first is a mechanistic approach, whereby the modeler tries to
identify all possible chemical reactions that contribute to the process behavior; this
approach is particularly fruitful in well-characterized systems (for example, under-
stood model pathways or in vitro networks), but the resulting models may be ex-
tremely complex and require heavy numerical treatment. The famous Huang-Ferrell
model of the MAPK pathway [22] is one of the best examples of this approach. A list
of 10 reactions is used to model the three-stage, double phosphorylation pathway,
and build 18 ODEs with 30 parameters using the mass action kinetics formalism. To
illustrate this process, we consider solely the activation stage of the cascade, where
MAPKKK, which we denote as M3K for brevity, is activated (M∗3K) and inactivated
respectively by two “input” enzymes U1 and U2. These reactions are:

M3K +U1
f1−−⇀↽−−
r1

M3K ·U1
k1−−⇀ M∗3K +U1,

M∗3K +U2
f2−−⇀↽−−
r2

M∗3K ·U2
k2−−⇀ M3K +U2.

The corresponding ODEs associated to these isolated reactions for M3K activa-
tion/inactivation are:

d m3K

dt
=− f1m3K u1 + r1m3K ·u1 + k2m∗3K ·u2,

d m3K ·u1

dt
=+ f1m3K u1− (r1 + k1)m3K ·u1,

d m∗3K
dt

=− f2m∗3K u2 + r2m∗3K ·u2 + k1m3K ·u1,

d m∗3K ·u2

dt
=+ f2m∗3K u1− (r2 + k2)m∗3K ·u1.

However, when considered in the context of the entire pathway, M∗3K binds and
phosphorylates M2K : thus, the ODE describing the dynamics of M∗3K include ad-
ditional second order terms. This example highlights the rapidly growing size and
complexity of detailed models built using mass action kinetics. Nevertheless, it must
be noted that the mass action formalism allows to derive ODEs systematically once
reactions are specified, and many free software tools are available to automatically
perform this operation [21, 43].

The second approach is phenomenological and driven by sensible approxima-
tions that describe qualitatively the observed dynamics; this approach generally
yields models more amenable to analytical treatment, which however may not cap-
ture faithfully the system’s dynamics and ignore several sources of uncertainty. Us-
ing a combination of mathematical analysis and numerical simulations supported by
experimental data, the Huang-Ferrell model can be collapsed into a simpler, gray-
box model where several intermediate reactions are captured by cooperative Hill
functions. For instance, the dynamics of a kinase species x being doubly phosphory-
lated by its input u (where the input is the upstream kinase), yielding active kinases
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xp and xpp, can be written as:

dx
dt

=−uV 1
x

K1 + x
+V2

xp

K2 + xp
,

dxp

dt
= uV 1

x
K1 + x

−V2
xp

K2 + xp
−uV 3

xp

K3 + xp
+V4

xpp

K4 + xpp
,

dxpp

dt
= uV 3

xp

K3 + xp
−V4

xpp

K4 + xpp
.

The readers familiar with Michaelis-Menten enzyme kinetics will immediately rec-
ognize that the functional terms in the equations above come from a simple assump-
tion of timescale separation between the binding/unbinding dynamics of an enzyme
to its substrate, and the catalytic step of the reaction. By solving numerically the
equations above for plausible reaction parameters we find that, as a function of a
constant input concentration u, the doubly phosphorylated kinase xpp at the end of
the cascade exhibits a switch-like response. If matching steady-state behavior is the
objective of the model, one could further collapse the equations above into a simple
first order system that relates the input u with the output of the cascade m = xpp:

dm
dt

=
αun

Kn
M +un −m,

where now m indicates the concentration of doubly phosphorylated kinase, and pa-
rameters α , K, and n are chosen to capture to the observed input/output relationship.

Based on this simplified model for the double phosphorylation process of each
kinase, one can assemble a simple phenomenological model for the entire cascade:

dm3

dt
= α3

un3

Kn3
M3 +un3

−m3

dm2

dt
= α2

mn2
3

Kn2
M2 +mn2

3
−m2 (1)

dm1

dt
= α1

mn1
2

Kn1
M1 +mn1

2
−m1.

Later we will use this simplified model to illustrate control and dyamical systems
theory methods to analyze its behavior. A more accurate, yet simple, model of the
pathway is proposed in [3], including double phosphorylation steps for each kinase.

3 Analysis of dynamic behaviors
We can write the ODE model of a generic molecular process as:
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dx
dt

= f (x,u), (2)

x(0) = x0,

where x is a vector in Rn whose components are the variables of interest in the
model. In a system of molecules, these components are concentrations. Vector x
describes the behavior in time of the system, and it is also called the state vector.
Vector u in Rm represents external inputs to the system, for example concentrations
of inducers or activating enzyme species. Function f (x,u) captures the interactions
among the chosen dynamic variables and the inputs. Finally, the problem includes a
specification of initial conditions (or initial state) in the vector x0.

Most models of biomolecular phenomena are nonlinear: thus, it is difficult (with
few exceptions) to derive analytical predictions of their dynamics. The most general
way to handle nonlinear systems is to analyze of their dynamics in a neighborhood
of their equilibrium points.

3.1 Linearization
Linearization analysis consists in approximating the behavior of a nonlinear system
in a neighborhood of its equilibrium points using its linearized dynamics; a brief
introduction to this technique is provided in this chapter, and the reader should refer
to [25, 32] for more details.

The equilibrium points of the general dynamical system (2) for a given value of
external inputs u, are defined as the states x such that f (x,u) = 0. In other words, if
the system’s state is precisely x, all future states will remain equal to x.

As a simple illustrative example, consider the differential equation:

dx
dt

= ux− x2 (3)

If we set ẋ = 0, we find the condition x(u−x) = 0, which is satisfied for x = 0, x = u.
Once the system’s equilibrium has been found, we can write a Taylor series approx-
imation for the system’s dynamics near each equilibrium, stopping at the first order:

dx
dt

= f (x,u)≈
=0︷ ︸︸ ︷

f (x,u)+
∂ f (x,u)

∂x |x=x,u=u
(x− x)+

∂ f (x,u)
∂u |x=x,u=u

(u−u)

≈ Jx(x− x)+ Ju(u−u),

where Jx and Ju are constant scalars or matrices that capture the differential be-
havior of the system near the equilibrium. This procedure is the first step of lin-
earization. Now with a simple change of variable, defining ξ = (x−x) and ω = u−u
we can rewrite the system as:

dξ

dt
= Jxξ + Juω,
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which is a linear dynamical system describing the near equilibrium dynamics of the
original nonlinear system.

Going back to the illustrative example at equation (3), where f (x,u) = ux− x2

we find that Jx = u−2x, and Ju = x. Therefore, the approximated system’s dynamics
near each equilibrium point are:

x = 0 ⇒ dξ

dt
= uξ , x = u ⇒ dξ

dt
=−uξ + xω,

where ξ and ω are values of the state and the input near the equilibrium.
For models defined by several states and differential equations, linearization

yields a linear system described by two matrices:

Jx =


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn


|x=x,u=u

, Ju =


∂ f1
∂u1

∂ f1
∂u2

. . . ∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

. . . ∂ f2
∂um

...
...

. . .
...

∂ fn
∂u1

∂ fn
∂u2

. . . ∂ fn
∂um


|x=x,u=u

.

Matrix Jx is known as the system’s Jacobian matrix. If the system of ODEs has n
equations (states), the Jacobian is always an n× n matrix; Ju is an n×m matrix,
where m is the number of external inputs.

Once the system has been linearized, we can investigate its local behavior with
standard linear analysis methods. In particular, by finding the eigenvalues of the Ja-
cobian we can immediately establish if the equilibrium is stable or unstable. Eigen-
values λ and eigenvectors v of a matrix A are defined by the following relationship:

Av = λv.

If A is viewed as a linear map, eigenvectors represent special directions in the do-
main of A which remain unaltered in the codomain, except for scalar transforma-
tions. The eigenvalues of a matrix A are the roots λ of the polynomial equation:

det(A−λ Id) = 0,

where Id is the identity matrix of appropriate dimension. It is well known [1, 32]
that the fundamental solution of a matrix ODE system ẋ = Ax+Bu is determined by
the matrix exponential Φ = eAt . (The natural response of the system, when u = 0, is
x(t) = eAtx0.) In most practical cases, a real or complex matrix A is similar to a diag-
onal matrix ∆ whose elements on the diagonal are the eigenvalues of A: A=P∆P−1,
where P is a matrix of eigenvectors associated to the eigenvalues of A. This means
that we can rewrite the fundamental solution matrix Φ = eAt = Pe∆ tP−1 (the matrix
exponential of a diagonal matrix is simply a diagonal matrix whose elements are the
corresponding exponentials). Thus, the behavior of a linear system is given by lin-
ear combinations of exponential functions, whose convergent or divergent behavior
exclusively depends on the sign of the eigenvalues. By determining the eigenval-
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ues, and most importantly their sign, we can classify the system as stable, when all
eigenvalues have a negative sign; when at most one zero eigenvalue is present, the
system is classified as marginally stable; when at least one eigenvalue is positive,
the system is unstable.

Finding the eigenvalues of Jx at each equlibrium allows us to build an approx-
imate map of how the system behaves. Returning to our simple scalar example at
equation (3):

x = 0 ⇒ Jx = u, x = u ⇒ Jx =−u,

Therefore, for non-zero u, the system always has one stable and one unstable equi-
librium.

3.1.1 Linearization example: the MAPK cascade

We can carry out a linearization analysis of the MAPK cascade model (1), choosing
αi = 1 and KMi = 1 for i = 1,2,3, and n3 = 1, n2 = n1 = 2:

dm3

dt
=

u
1+u

−m3

dm2

dt
=

m2
3

1+m2
3
−m2

dm1

dt
=

m2
2

1+m2
2
−m1.

First, we find the equilibria by setting each derivative to zero. It is very easy to find
that there is a single equilibrium where m3 = u/(1+ u), m2 = m3

2/(1+m3
2), and

m1 = m2
2/(1+m2

2). The Jacobian of the system is:

Jx =

−1 0 0
α −1 0
0 β −1

 , (4)

where α = 2m3
(1+m3

2)2 and β = 2m2
(1+m2

2)2 . The eigenvalues can be read directly on the
diagonal of Jx, because it is a lower triangular matrix. We find λ1 = λ2 = λ3 =−1.
Therefore, this systems is stable near its single equilibrium point. Given the structure
of the Jacobian and of the ODEs, the equilibrium is stable regardless of the choice
of parameters made. Therefore, this simplified model of the cascade suggests that its
stable dynamic behavior is robust with respect to uncertainty in the parameters. We
will later see that if the cascade includes additional interactions among the kinases,
which generate feedback loops, we will not be able to reach the same conclusion.
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3.1.2 Phase portraits

Phase portraits are extremely useful graphical representations, in particular for mod-
els of low dimensions. The solution trajectories are parameterized over time, and
plotted contrasting different components [32]. These graphs can be quickly traced
qualitatively, and numerous numerical routines are available for quantitative plots
(see, for example MATLAB’s pplane function).

For illustrative purposes, one typically considers second order linear systems,
such as: [ dx

dt
dy
dt

]
= A

[
x
y

]
.

The system’s phase portrait simply consists in a plot where x(t) is graphed versus
y(t) on a plane. This plot can be quickly sketched by identifying the eigenvalues
and eigenvectors of matrix A. The real part of the eigenvalues determines whether
trajectories converge toward the origin as an equilibrium point (negative real part,
equilibrium is stable) or diverge (positive real part, equilibrium is unstable); real
eigenvectors define invariant subspaces on which the behavior of the trajectory is
uniquely determined by the associated eigenvalue. Fig. 1 shows typical examples
of two-dimensional phase portraits, such as sinks (A), sources (B), and hyperbolic
points (C). When eigenvalues are complex conjugates, trajectories spiral in or out of
the origin depending on the sign of the real part (Fig.1 D) I believe this label should
be D and E and the next should be F ; if the real part is zero, the system is classified
as a center, i.e. a systems whose trajectories oscillate without damping (Fig.1 E). I
believe this label should be F

The only equilibrium of the MAPK pathway model considered in Section 3.1.1
is a sink (Fig. 1 A), because all the eigenvalues of the Jacobian are real and have
negative real part.

3.2 Bifurcations
If one or more parameters of the system vary, the number of equilibria and their
local stability properties may change. In a biological network binding rates may
vary as a function of environmental stimuli and result in dramatically different dy-
namic responses: for instance, there is evidence that MAPK pathway response can
exhibit a variety of responses depending on the input hormones [36] I would sug-
gest changing ”input hormones” to either ”external stimuli” or ”growth factors” or
maybe ”external input molecules”, which affect binding affinities of its components.
The pathway is known to exhibit a multistationary (multiple equilibria either stable
or unstable) or oscillatory responses [33]. The variation of one or more parameters
followed by a change in dynamics is generally termed a bifurcation phenomenon.
Classical examples are the saddle-node and the Hopf bifurcation [32]. Section 4.1
provides examples of bifurcations in a simple biological system with feedback.
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Fig. 1 Two dimensional phase portraits. A. Sink (all eigenvalues have negative real part). B. Source
(all eigenvalues have positive real part). C. Hyperbolic point (one eigenvalue has positive real part,
one eigenvalue has negative real part; eigenvectors coincide with the axes). D. Stable spiral sink
(eigenvalues are complex conjugate and have negative real part). E. Unstable spiral sink (eigenval-
ues are complex conjugate and have positive real part). F. Center (eigenvalues are pure imaginary,
the system is marginally stable).

4 Feedback in synthetic biological networks
Gene networks rely on feedback to regulate expression of proteins, reduce noise,
and guarantee desired dynamic behaviors [7, 10, 29, 35]. The target behavior of en-
gineered networks depends as critically on the use of feedback: in this section we
provide several examples of networks where the design of positive or negative feed-
back allows I suggest adding ”the system” following ”allows” to clarify the subjectto
achieve dramatically different behaviors. We begin with a general two-gene model
which has been used to describe a variety of simple synthetic and natural networks;
we show that in some cases the feedback topology is the key player in determining
the dynamic outcomes of the system [11,41]. Then, we highlight the effects of syn-
thetic feedback loops on a model for the MAPK signaling pathway in yeast, which
has recently been engineered to re− routematingbehaviors [17] I suggest chang-
ing ”re-route mating behaviors” to ”conditionally route cells to divergent mating
behaviors”

4.1 Feedback loops reshape the dynamic behavior of a system
We consider a standard model for transcription and translation of two genes, where
proteins reciprocally modulate their expression forming a feedback loop. Similar
models are commonly encountered in the literature (see, for instance [15, 27]). For
illustrative purposes, we use a nondimensional model:

ṙ1 = γ1 +H1(p2)− r1, ṗ1 = β1r1− p1, (5a)
ṙ2 = γ2 +H2(p1)− r2, ṗ2 = β2r2− p2, (5b)
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where, for i = 1,2, ri are RNA species concentrations; pi are protein concentrations;
Hi(·) are Hill functions, and all Greek letters denote reaction rates that are positive
scalars.

Depending on the regulatory action and feedback created by the protein transcrip-
tion factors, and thus depending on the type of Hill function, the network presents a
different number of equilibria and different possible dynamic behaviors. For exam-
ple, suppose H1(p2) = α1

pn
2

1+pn
2

and H2(p1) = α2
pn

1
1+pn

1
: this is a two–gene positive

feedback loop, which is often encountered in developmental networks [2, 12]. The
Jacobian of the system is:

J =


−1 0 0 ∂H1

∂ p2
β1 −1 0 0
0 ∂H2

∂ p1
−1 0

0 0 β2 −1

 , (6)

wjere ∂Hi/∂ p j = αi
npn−1

j
(1+pn

j )
2 , (i, j) ∈ {(1,2),(2,1)}. Note that the Jacobian en-

tries, evaluated at a positive equilibrium, are sign definite, i.e. they do not change
sign for arbitrary choices of the (positive) parameters αi, βi and n.

The Jacobian sign pattern is thus a “structural” property of this system, and it can
be associated with a graph: nodes correspond to the concentrations of biochemical
species and are interconnected by positive (+1) or negative (−1) arcs according
to the corresponding Jacobian entries, as shown in Fig. 2 a. Thus, the positive or
negative sign of the loops generated does not depend on the specific choice of the
parameters.

We can derive expressions for the equilibria of the system, which are given by
the intersections of the two equilibrium conditions (Fig. 2 a, top row):

p1 = β1

(
γ1 +α1

pn
2

1+ pn
2

)
, p2 = β2

(
γ2 +α2

pn
1

1+ pn
1

)
.

For n = 1 there is an intersection with p1 and p2 positive. For n > 1, the system
may admit multiple, typically three, positive equilibria. For an assigned value of n,
we consider one equilibrium and we evaluate its stability properties by finding the
eigenvalues of the Jacobian, which are the roots of its characteristic polynomial

(s+1)4−K = 0, where K = β1β2
∂H1

∂ p2

∂H2

∂ p1
> 0. (7)

Note that, although n and the equilibrium values of pi are fixed, K can vary depend-
ing on αi and βi. The roots of (7) are

s =−1+q, −1−q, −1+ iq, −1− iq, where q = K
1
4 .

If K > 1, there is only one root having positive real part, and it is real. If K < 1,
all of the roots have negative real part. Thus, the system can only admit real expo-
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Fig. 2 a: Two–gene system with double positive feedback loop (positive cycle). Pointed arrow-
heads indicate positive Jacobian interconnection entries, while hammer–arrowheads indicate neg-
ative interconnections. b: Two–gene system with double negative feedback loop, resulting in an
overall positive cycle. c: Two–gene feedback interconnection with positive and negative regula-
tion, resulting in an overall negative cycle. In all simulations the nondimensional parameters are
chosen as γ1 = γ2 = 0.2, α1 = α2 = 3, β1 = β2 = 1 and n is varied. The right column shows the cor-
responding value of p2 equilibria for varying n, and their different pattern of transition to instability
(green dots are stable, red dots are unstable equilibria). I think one of the color captions is extra.
I see green and red dots, but no blue in right panel. So the next sentence might be deleted?Green
dots are stable equilibria, blue dots are unstable equilibria.

nential instability, i.e. instability arising due to a real eigenvalue changing sign from
negative to positive. Fig. 2 a, top row, shows equilibrium conditions and example
trajectories in the p1− p2 plane of the phase space for different values of n (stable
equilibria are represented as green circles, unstable equilibria as blue circles). The
last column in Fig. 2 shows the evolution of the number and stability properties of
equilibria for p2 as n varies.

If H1 = α1
1

1+pn
2
, H2 = α2

1
1+pn

1
, network (5) specifies a two–gene double negative

feedback loop, depicted in Fig. 2 b, left. This circuit is also known as toggle switch,
an example of which is the famous synthetic biological circuit by Gardner [18]; a
natural example of a toggle switch is the Cdc2–Wee1 network considered, for in-
stance, in [4]. We can repeat the same analysis performed for the two–gene double
positive feedback loop, and get similar results in terms of admissible transitions to
instability, which can be only real exponential, regardless of the considered equilib-
rium (Fig. 2 b).
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We now compare the previous two examples to the case when Hill functions
have opposite regulatory roles, i.e. H1 = α1

pn
2

1+pn
2

an H2 = α2
1

1+pn
1
: the network can

behave as a two–gene oscillator [27]. First, we observe that the Jacobian is still a
sign definite matrix. However, the “interconnection” terms ∂H1/∂ p2 and ∂H2/∂ p1,
the derivatives of the Hill functions, now have opposite signs, due to the different
slopes of such functions, and thus generate an overall negative feedback loop (Fig. 2
c). The equilibrium conditions are now

p1 = β1

(
γ1 +α1

pn
2

1+ pn
2

)
, p2 = β2

(
γ2 +α2

1
1+ pn

1

)
,

and admit a single intersection regardless of the value of αi, βi, and n (Fig. 2 c, cen-
tral panels show the equilibrium conditions for increasing values of n). The charac-
teristic polynomial is

(s+1)4−K = 0, where K = β1β2
∂H1

∂ p2

∂H2

∂ p1
< 0. (8)

Since now K < 0, all of the roots of (8) are complex:

s = (−1+q)+ iq, (−1−q)− iq, (−1−q)+ iq, (−1+q)− iq,

where q =
(−K)

1
4

√
2

.

As a consequence, only oscillatory unstable dynamics can arise, rather than real
exponential. Precisely, unstable oscillations do arise when K < −4. As we can see
by studying the original nonlinear system, for any given value of n there is only one
equilibrium, whose stability properties can change, again, depending on the values
of αi and βi.

To summarize, the analysis of this simple two–gene system has shown that, with-
out a precise knowledge of the functions H1 and H2, we can reach very strong con-
clusions regarding the possible dynamic behaviors of the system. These conclusions
are consistent with Thomas’ conjectures [41], and do not depend on specific func-
tions or parameter choices. Rather, they depend on the presence of positive or nega-
tive feedback interconnection among components, thus on the presence of a positive
or a negative cycle in the Jacobian associated with the system. In particular, this ex-
ample clearly highlights that there is a relationship between Jacobian cycles and
admissible transitions to instability. A qualitatively similar study was carried out
and validated by building synthetic bacterial circuits in [6]; analysis relied on the
S–systems formalism [37].

4.2 Synthetic feedback in the MAPK pathway
The dynamic profile of gene expression coordinates spatio-temporal processes in
organisms. At the single-cell level, dynamics of signaling components can dictate
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the dynamics of gene expression and control cellular entry into divergent cell fates.
The MAPK pathway in PC-12 cells provides a classic example of signaling dy-
namics regulating cellular fate. In PC-12 cells, unique extracellular cues alter the
MAPK network topology by inducing positive or negative feedback loops leading
to differential temporal profiles of MAPK activation. Each temporal profile maps to
a distinct and divergent cellular behavior [36]. Synthetic switching of these topolo-
gies alters the dynamic profile and routes cells to the alternative fate, suggesting
that control of network topology and thus signaling dynamics controls cellular fates
(e.g. differentiation, division, and apoptosis). Given the importance of cellular fate
in fields such as stem cell biology and cancer biology, synthetic circuits that can
control dynamic signaling andthuscell f ateI suggest deleting ”and thus cell fate”
may provide useful research tools as well as potential therapies.

Synthetic reshaping of dynamic signaling profiles in a MAPK pathway has al-
lowed the construction of pulse generators, accellerators, delays, ultrasensitive re-
sponses, and bistable switches [9] [23]. Construction of positive feedback loops
that induce bistability in a MAPK pathway was shown to be dependent on feedback
strength [23]. Additionally, components within the MAPK pathway can be tuned to
allow for the existence of bistability [30].

The yeast pheromone-responsive pathway is a canonical MAPK pathway with
three-tiered MAPK cascade. Due to the genetic tractability of yeast relative to mam-
malian systems, the pheromone-responsive pathway, also called the mating pathway,
has been extensively analzyed experimentally and modeled computationally. Sig-
naling in the mating pathway is initiated by pheromone, alpha factor,I have tried
converting ”alpha” into the symbol, but I keep getting an error. Sorry but I haven’t
been able to figure out why binding to a transmembrane receptor which initiates
G-protein signaling and a phosphorlyation casade from the G-protein subunit Ste4
I added ”the G-protein subunit” to denote Ste4’s positionto the canonical scaffold-
bound three-tiered MAPK cascade. As the output of the cascade, the phoshorylated
MAPK Fus3 translocates the nucleus activating transcription factors and transcrip-
tion at mating-responsive genes including the Fus1 locus. The phosphatase Msg5
antagonizes signaling by dephorylating Fus3 in the cytoplasm. Activation of mating
genes induces cell-cycle arrest, polarized cell growth, and fusion of haploid cells to
form diploids with opposite mating-type cells.

To synthetically rewire the topology of the mating pathway, positive and negative
feedback loops were constructed around the native pathway [17]. To construct feed-
back loops (Fig. 3), a pathway-responsive promoter was cloned from the Fus1 locus
into plasmids. Ste4 overexpression was shown to initiate pathway activation, pos-
tively regulating pathway activity. Thus, a positive feedback loop was constructed
by placing Ste4 under the regulation of the Fus1 promoter. Conversely, overexpres-
sion of Msg5 attenuated signaling, negatively regulating pathway activation. Pairing
Msg5 with the Fus1 promoter constructed a negative feedback loop. Pairing posi-
tive and negative feedback constructs with RNA-based transducers of varying ac-
tivity generated constructs with a range of feedback strengths. Experimentally, the
strength of positive feedback was shown to dictate the pathway sensitivity to ac-



14 Elisa Franco and Kate E. Galloway

tivation. Similarly, the strength of negative feedback correlated with the degree of
pathway attenuation.

To mathematically capture insights into the synthetically wired systen, a phe-
nomenogical model of the MAPK pathway with synthetic feedback was also con-
structed [17]:

dSte4
dt

= βSte4−δSte4Ste4+ kp f
Fus1np f

K
np f
M,Fus1,p f+Fus1np f

, (9)

dFus3
dt

= βFus3−δFus3Fus3+ kα

αn

Kn
M,α +αn + kSte4

Ste4m

Km
M,Ste4 +Ste4m (10)

− kMsg5Fus3
Msg5q

Kq
M,Msg5 +Msg5q ,

dFus1
dt

= βFus1−δFus1Fus1+ kFus3
Fus3p

K p
M,Fus3 +Fus3p , (11)

dMsg5
dt

= βMsg5−δMsg5Msg5+ kn f
Fus1nn f

K
nn f
M,Fus1,n f+Fus1nn f

. (12)

-

Ste4

Fus3

Fus1

Msg5

+
↵

++

+ +

-
+

Fig. 3 Scheme of the en-
gineered MAPK pathway
in equations (9)–(12). This
scheme can also be seen
as a graph representing the
sign-definite Jacobian. Or-
ange arrows indicate the
synthetic feedback loops.

Terms corresponding to the engineered positive and
negative feedback loops are highlighted inside boxes. It is
an easy exercise to compute the system’s Jacobian matrix;
this matrix is sign definite, meaning that the sign of each
entry does not depend on the parameters chosen. Because
of sign definiteness, the scheme in Fig. 3 can be also used
as a “graph” representation of the Jacobian matrix similar
to those obtained in Fig. 2.

In the rest of this section we consider the cases where
the system is added exclusively one feedback loop, posi-
tive in the first case (activation of Ste4 expression), neg-
ative in the second (activation of Msg5 expression)I re-
placed ”by Fus1” with ”expression” to simplify that ex-
pression increased without delineating from the synthetic
promoter, which might be confused with the endogenous
promoter. With numerical simulations we will highlight
the potential for bistability of the system with positive feedback, and of oscillations
in the system with negative feedback. Unless otherwise noted, we use the same
parameters used in [17], which were fitted to experimental data. A table with all
parameters is reported in the Appendix.
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4.2.1 A synthetic positive feedback loop can yield bistability

If we add exclusively a positive feedback loop to the system, Msg5 can be seen as
an input (possibly constant or slowly varying) to the main pathway (a scheme is in
Fig. 4 A). In the following, we indicate the Msg5 input as u. We also assume that
the inducer α is absent. Thus, our equations reduce to:

dSte4
dt

= βSte4−δSte4Ste4+ kp f
Fus1np f

K
np f
M,Fus1,p f+Fus1np f

, (13)

dFus3
dt

= βFus3−δFus3Fus3+ kSte4
Ste4m

Km
M,Ste4 +Ste4m − kuFus3

uq

Kq
M,u +uq , (14)

dFus1
dt

= βFus1−δFus1Fus1+ kFus3
Fus3p

K p
M,Fus3 +Fus3p , (15)

where again we highlight with a box the term introducing positive feedback in
the network. In the absence of α factor, the network output self-activates to a high
value due to the presence of feedback. This behavior is showed in the numerical
simulations in Fig. 4: increasing values of rate kp f results in stronger self-activation
of the pathway.

To explore the potential for bistability, as done in the previous section we can
find equilibrium conditions for Ste4 and Fus1:

Ste4 =
1

δSte4

{
βSte4kp f

Fus1np f

K
np f
M,Fus1,p f +Fus1np f

}
(16)

Fus3 =
1

δFus3 + ku
uq

Kq
M,u+uq

{
βFus3 + kSte4

Ste4m

Km
M,Ste4 +Ste4m

}
(17)

Fus1 =
1

δFus1

{
βFus1 + kFus3

Fus3p

K p
M,Fus3 +Fus3p

}
. (18)

These equilibrium conditions depend on several parameters, each affecting the num-
ber and stability properties of the admissible equilibria. We focus our attention on
the engineered reactions creating the positive feedback loop. We find that parame-
ter KM,Fus3,p f is particularly important to achieve bistability; this parameter repre-
sents the half-max activation value of Ste4 by Fus3. The corresponding Hill coef-
ficient is equal to 3, making the half-max value act as an activation threshold for
Ste4. Equilibrium conditions (16) and (18) are plotted in Fig. 4 for different values
of KM,Fus3,p f (kp f = 2). For the chosen parameter set, bistability is achieved only
within a range of values of KM,Fus3,p f .
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Fig. 4 A: Scheme of the network with positive feedback. B: Concentration of Fus3 as a function of
time, for different values of kp f . C: Equilbirium conditions (blue), their intersections (green, stable
points; red, unstable points), and sample trajectories (gray) in the plane Fus1-Ste4. Bistability can
be achieved when KM,Fus3,p f has values around 0.5−0.7.

4.2.2 A synthetic negative feedback loop has the potential to yield oscillations

We now numerically simulate the pathway in the presence of an engineered negative
feedback loop only. In this case, Ste4 can be considered an external input, which we
now call w. We assume that α factor is present. The ODEs are:

dFus3
dt

= βFus3−δFus3Fus3+ kα

αn

Kn
M,α +αn + kw

wm

Km
M,w +wm (19)

− kMsg5Fus3
Msg5q

Kq
M,Msg5 +Msg5q ,

dFus1
dt

= βFus1−δFus1Fus1+ kFus3
Fus3p

K p
M,Fus3 +Fus3p , (20)

dMsg5
dt

= βMsg5−δMsg5Msg5+ kn f
Fus1nn f

K
nn f
M,Fus1,n f+Fus1nn f

. (21)
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The box highlights the negative feedback term; Fig. 5 A shows the topology of
this pathway, which corresponds to the sign pattern of the Jacobian matrix. Equilib-
rium conditions can be derived as done for the positive feedback pathway at equa-
tions (16)–(18). To explore the potential for oscillations in the presence of negative
feedback, we focus again on the parameters of the engineered reaction controlling
Msg5 as a function of the output Fus1. Equilibrium conditions always intersect at
one individual point, as shown in Fig. 5 C. We find that for increasing values of
both the rate kn f and the Hill coefficient nn f , the single equilibrium becomes un-
stable, with complex conjugate eigenvalues which correspond to local oscillations.
The behavior in time of the output Fus1 is shown in Fig. 5 B for a range of values of
kn f , and high nn f = 6. For the chosen parameter set, our numerical analysis reveals
that an extremely high value of kn f and nn f (experimentally not achievable) has the
potential to yield oscillations, howeve their amplitude is limited and their frequency
is very high. This means that experimentally it would be difficult to achieve os-
cillations in this particular synthetic pathway. More systematic exploration of the
system’s parameter space may reveal the existence of operating conditions that can
yield more realistic oscillations.
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Fig. 5 A: Scheme of the network with engineered negative feedback. B: Concentration of Fus3 as
a function of time, for different values of kn f . C: Equilbirium conditions (blue), their intersections
(green, stable points; red, unstable points), and sample trajectories (gray) in the plane Fus1-Ste4.
Local oscillations can be achieved for high values of kn f and nn f .
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5 Conclusions
In this chapter we have provided a general overview of the role of feedback in
molecular networks. We have introduced simple yet powerful methods commonly
used in dynamical systems and control theory to identify the behavior of a nonlin-
ear dynamical system around its equlibria. Feedback loops dramatically affect the
possible dynamic outcomes of a system: we showed that in some cases such out-
comes may be determined exclusively by the type of feedback (positive or negative)
present in the network, regardless of the parameters. We address the reader to [11]
for further analysis on this topic. In some cases, parameters responsible for a bi-
furcation can be easily identified and tuned to achieve the desired behavior. These
ideas have been largely exploited in the design of synthetic gene networks in the last
decade [6, 15, 18, 40].

Throughout the chapter, we also used the MAPK pathway as an example of a sys-
tem that can be successfully modeled with ODEs [3,5,17,22] and lends itself well to
the linearization analysis we presented. We focused on a recently engineered MAPK
pathway in yeast, where positive and negative feedback loops were engineered us-
ing inducible promotersI think we could keep ”inducible”, but I think ”pathway-
responsive” might be more precise since people will think of something more like
galactose or doxycycline with inducibleand RNA transducers [17]. Through numer-
ical simulations, we showed that positive feedback can yield bistability and negative
feedback can yield oscillations. We leave it as an exercise to the reader to verify the
exclusive potential for bistability or oscillations in the two engineered versions of
the network [11], following the steps outlined at Section 4.1.

Appendix

Nondimensionalization of model (5)

We will carry out the nondimensionalization procedure for the toggle switch net-
work, leaving the derivation for the other cases to the reader. We follow nondi-
mensionalization steps similar to those proposed in [15] and [16, 27]. Consider the
simple (dimensional) model:

τ Ṙ1 = c1 +a1
1

Kn
M1+Pn

2
−R1, Ṗ1 = kpR1− kdP1, (22a)

τ Ṙ2 = c2 +a2
1

Kn
M2+Pn

1
−R2, Ṗ2 = kpR2− kdP2. (22b)

Here ci is the “leak” transcription of RNA. For simplicity, we assume that the trans-
lation and degradation rates for the proteins are the same. Constant τ is the mRNA
half–life in the system. Constants KMi represent the number of proteins necessary to
half–maximally repress Ri. Finally, assume the translation efficiency of each RNA
species is given by p̄i, which corresponds to the average number of proteins pro-
duced by a single RNA molecule.
We define the nondimensional variables: ri =Ri/p̄i, pi =Pi/KM j, (i, j) ∈ {(1,2),(2,1)}.
We rescale time as t̃ = t/τ , and also define the nondimensional parameters:
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γi =
ci

p̄i
, αi =

ai

p̄i Kn
Mi

, βi =
kp p̄i

kd KM j
, T =

1
τkd

.

The resulting nondimensional equations are:

ṙ1 = γ1 +α1
1

1+pn
2
− r1, T ṗ1 = β1r1− p1, (23a)

ṙ2 = γ2 +α2
1

1+pn
1
− r2, T ṗ2 = β2r2− p2, (23b)

Finally, if we assume T ≈ 1, we get a system in the same form as equations (5).

Parameters for the MAPK pathway model at Section 4.2
The pathway parameters used in the simulations at Section 4.2 are reported in Ta-
ble 1. These parameters were fitted to experimental data in [17], and we report also
lower and upper bounds used in the fitting procedure. The actual table intersects the
references appearing on page 20
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Species Description β (production)      LB UB

Fus1 Promoter activity, pathway output 0.001 1.00E-03 2

Fus3 MAPK, central hub in pathway 0.1 1.00E-03 1

Msg5 Native Msg5, negative regulator 0.01 1.00E-03 1

Ste4 Native Ste4, positive regulator 0.2 1.00E-04 0.5

Species Description δ (degadation) LB UB

Fus1 Promoter activity, pathway output 1 1.00E-03 3

Fus3 MAPK, central hub in pathway 0.7 1.00E-03 1

Msg5 Native Msg5, negative regulator 3 1.00E-03 5

Ste4 Native Ste4, positive regulator 2 1.00E-03 5

Rates Description Value LB UB

kα Rate constant for α-factor activation of Fus3 2 5.00E-01 4

kFus3 Rate constant for  Fus3 activation of Fus1 1.3 1.00E-03 2

kSte4 Rate constant for Ste4 activation of Fus3 1 1.00E-03 5
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kc,Ste4 Rate constant for production of Ste4 from booster module2 1.00E-03 5
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kc,Msg5 Rate constant for production of Msg5 from resistance module2.5 1.00E-03 5
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Hill coefficientsDescription Value LB UB

n Hill coefficient for  α-factor effect on Fus3 2 1 5

nnf Hill coefficient for negative feedback loop,  Fus1 production of Msg51 1 5

npf Hill coefficient for positive feedback loop,  Fus1 production of Ste43 1 5

m Hill coefficient for Ste4 activation of Fus3 4 1 5

q Hill coefficient for Msg5 deactivation of Fus3 4 1 5

p Hill coefficient for Fus3 activation of Fus1 1 1 5

KM Description Value LB UB

KM,α Half-maximal concentration of α-factor (pheromone) 14 10 40

KM,Ste4 Half-maximal concentration of Ste4 0.5 1E-03 5

KM,Msg5 Half-maximal concentration of Msg5 0.05 1E-03 5

KM,Fus3 Half-maximal concentration of Fus3 1 1E-03 2

KM,Fus1,nf Half-maximal concentration of Fus1 for negative feedback loop1 1E-03 5

KM,Fus1,pf Half-maximal concentration of Fus1 for positive feedback loop0.1 1E-03 5

Table 1 Parameters for the MAPK pathway model with upper and lower bounds for fitting
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